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We study Ostwald ripening in the regime of small volume fraction and consider spatially
periodic systems whose size is smaller than the screening length. Within the snapshot
perspective we obtain an explicit characterization of the leading-order deviation to
the classical mean-field theory by Lifshitz, Slyozov and Wagner (LSW). Using this
representation, we show that the corrections are not universal, in the sense that the
mean value has a strong dependence on geometry, and arbitrarily large fluctuations can
happen with finite probability.
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1. INTRODUCTION

Late-stage phase separation in a dilute off-critical binary mixture is driven by
competitive growth of the particles of the minority phase to reduce their total sur-
face energy. This phenomenon, known as Ostwald ripening, has been traditionally
studied by the mean-field theory by Lifshitz, Slyozov and Wagner (LSW),(8, 12)

which is appropriate in the limit of vanishing volume fraction φ. Both experi-
ment and numerical simulations have shown significant deviations from the LSW
results.(3, 4, 9)

First-order corrections to the LSW theory have been intensively studied in
the applied literature (see e.g., Refs. 5, 10, and 11 for reviews and references).
More recently, a mathematically rigorous result which establishes the scaling of
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the lowest order correction in finite systems was given in Ref. 6. It was shown that
the first-order correction to the LSW theory shows a crossover from a φ1/3 scaling
to a φ1/2 scaling when the system size becomes larger than the so-called screening
length which describes the effective interaction range of a particle. More precisely,
the deviation of the surface-energy decay rate from the mean-field prediction has
been considered as a measure for the deviation of the coarsening rate. It has
been established that for supercritical systems (systems larger than the screening
length), this quantity is with large probability negative and scales as φ1/2. In the
case of subcritical systems (systems smaller than the screening length) it was only
shown in Ref. 6 that the average value of the deviation behaves as φ1/3 N−1/3, N
being the particle number, and a one-sided bound with the same scaling was given.
We show here that this result is optimal, in the sense that the energy decay rate can
have large fluctuations (in the opposite direction). Furthermore, we show that the
average of the deviation from mean-field theory is geometry dependent, at least in
a periodic setting.

2. SET UP AND MAIN RESULTS

2.1. Overview

The coarsening process can be described by the Mullins-Sekerka evolution
and for small volume fraction φ this is well approximated by the monopole approx-
imation.(1, 2, 13) Here, one phase is represented by spherical particles with centers
{Xi }i=1,...,N and radii {Ri }i=1,...,N which are distributed in a domain � ⊂ R

3. The
growth rates of the particle volumes

Bi := d

dt

[
1

3
R3

i

]
= −R2

i

d Ri

dt
,

are given for each time as a solution of the linear system

1

Ri
= u∞ + Bi

Ri
+
∑
j �=i

B j

|Xi − X j | ,
∑

i

Bi = 0. (2.1)

The constant u∞ is called the “mean-field” and is determined by the constraint
that the total volume of the particles is conserved, which is equivalent to

∑
Bi = 0

(see e.g., Refs 5 and 6 for a more detailed presentation of the model and a
summary of the related literature). The identity (2.1) gives an exact evolution
equation for the empirical distribution of particle radii, and is the starting point
of the present analysis.

In their classical mean-field theory, Lifshitz, Slyozov and Wagner(8, 12) sim-
plified (2.1) by neglecting the interaction term. This gives

1

Ri
= uL SW

∞ + BL SW
i

Ri
,

∑
i

BL SW
i = 0,
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which has the explicit solution

BL SW
i = 1 − Ri u

L SW
∞ and uL SW

∞ = N∑
i Ri

,

hence uL SW
∞ = 1/R̄, where R̄ := 1/N

∑
i Ri is the mean radius in the system. LSW

predicted for the corresponding evolution equation for the particle size distribution
universal self-similar large-time asymptotics. This implies universal growth laws
for typical length scales and a universal particle radius distribution. Experiments
and numerical simulations of the evolution Eq. (2.1) show however larger growth
rates and broader size distributions than the ones given by the LSW theory. This is
not surprising, since in the LSW theory the local interaction between particles is
neglected. The LSW theory overestimates the distance over which diffusion takes
place and thus underestimates coarsening rates.

We are interested in the deviation of the coarsening rate given by the monopole
approximation from the LSW theory. To that aim we take in the following the so-
called snap-shot perspective, that is we consider a finite system {(Xi , Ri )}i=1,...,N ,
where Xi and Ri are independently distributed. Then we analyze the joint distri-
bution of {(Xi , Ri , Bi )}, where the growth rates Bi are determined as a solution of
the monopole approximation. In particular we are interested in how {Bi } deviate
from the LSW truncation {BL SW

i }.
As a measure for the deviation from the LSW theory we consider here as

in Ref. 6 the relative deviation in the rate of change of the surface energy. More
precisely, if E := 1

2N

∑
R2

i is the surface energy, then the decay rate is given by

Ė = − 1

N

∑
i

Bi

Ri
,

whereas the LSW theory gives Ė L SW = N−1
∑

BL SW
i /Ri . Within the Mullins-

Sekerka evolution (2.1) the surface energy is decreasing, and correspondingly
Ė ≤ 0 for all realizations {Xi , Ri )}. Also Ė L SW ≤ 0, but we expect that for
most realizations Ė − Ė L SW ≤ 0 since the LSW theory should underestimate
the coarsening rate. Three of us estimated the relative deviation Ė−Ė L SW

|〈Ė L SW 〉| in the

preceding paper.(6) It turns out that the scaling of the deviation depends on a
certain intrinsic length scale, the so-called screening length. The latter describes
the effective range of particle interactions and reflects the analogous effect to
the classical Debye-Hückel screening. In a system with particles of average ra-
dius 〈R〉 and typical neighrest-neighbor distance 〈d〉 the screening length ξ is
determined by the capacity density of the particles via ξ 2 = 〈d〉3

4π〈R〉 . For a finite

system with N particles and consequently system size ∼ 〈d〉N 1/3 this means that
the system is much smaller than the screening length if 〈d〉N 1/3 	 ξ or in other
words if N 	 ( 〈d〉

〈R〉 )3/2 ∼ φ−1/2. We call such a system subcritical as opposed to
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super-critical systems which are characterized by N 
 φ−1/2. We have shown in
Ref. 6 that with large probability

Ė − Ė L SW

|〈Ė L SW |〉 ∼ −φ1/2

if N 
 φ−1/2. (For the precise statement see Theorem 2.2 of Ref. 6). For subcritical
systems, that is if

lim
N→∞

N 2φ(N ) = 0, (2.2)

the result of Ref. 6 (cf. Theorem 2.1) was only that with large probability

Ė − Ė L SW

|〈Ė L SW 〉| ≥ −C
φ1/3

N 1/3
.

The goal of the present paper is to show that the latter result is in some sense
optimal. We completely characterize, for periodic boundary conditions, the distri-
bution of Ė−Ė L SW

|Ė L SW | . Our result implies in particular that for any M > 0 there is a
positive probability that

N 1/3

φ1/3

Ė − Ė L SW

|〈Ė L SW 〉| ≥ M > 0.

In addition we show that the sign of the expected value 〈Ė − Ė L SW 〉 depends on
the geometry of the domain.

2.2. Setting

Periodic boundary conditions. We consider a fixed realization of uniformly
distributed (in a sense specified below) particle centers {Xi } in a unit-volume
parallelepiped with periodic boundary conditions. The use of periodic boundary
conditions requires to replace in (2.1) the Green’s function for the Laplacian in the
whole space 1/|Xi − X j | with its periodic analogue, which we now define.

We fix three linearly independent vectors in R
3, denoted by {e1, e2, e3},

and assume that the unit cell they generate �L = {∑ xi ei : x ∈ (0, 1)3}, has unit
volume, i.e. |�L| = e1 · e2 ∧ e3 = 1. We shall denote by L = {∑ zi ei : z ∈ Z

3}
the lattice generated by {e1, e2, e3}, and by L∗ the reciprocal lattice, generated
by the reciprocal vectors fi , which are defined by the relation ei · f j = 2πδi j . To
shorten notation we further define L∗

0 = L∗\{0}.
The Green’s function for the Laplacian on �L with periodic boundary con-

ditions can be defined according to

G(x) := lim
ε→0

∑
k∈L∗

0

4π

|k|2 eik·x e−ε|k|2 , (2.3)
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where the arbitrary additive constant has been fixed by requiring that the average of
G over the unit cell must be zero. With periodic boundary conditions the problem
(2.1) becomes

1

Ri
= u∞ + Bi

Ri
+
∑

j

gi j B j ,
∑

i

Bi = 0,

where gi j = G(Xi − X j ) for i �= j , and

gii = G0 := lim
x→0

G(x) − 1

|x | . (2.4)

(A finite system can be recovered replacing gi j = 1/|Xi − X j | for i �= j , and
gii = 0.) Since

∑
Bi = 0, adding a constant to gi j does not change the solution

of the equation (in particular, taking gii = 0 and gi j = G(Xi = X j ) − G0 would
give an equivalent system which has a more direct correspondence to the non-
periodic formulation in (2.1)). The present choice leads to some simplifications in
the calculations that follow.

Scaling. We rescale the radii with respect to their typical size (φ/N )1/3,
and scale time so that the evolution rates Bi become of order one. The monopole
approximation reads, after rescaling,

1

Ri
= u∞ + Bi

Ri
+ φ1/3

N 1/3

∑
j

gi j B j ,
∑

i

Bi = 0. (2.5)

We still denote E := 1
N

∑
i R2

i , so that

Ė = − 1

N

∑
i

Bi

Ri
and Ė L SW = − 1

N

∑
i

BL SW
i

Ri
.

The ratio (Ė − Ė L SW )/|Ė L SW | is unaffected by the scaling. After rescaling,
|Ė L SW | = O(1), so it suffices to consider in the following the quantity Ė − Ė L SW .

Distribution of centers. We assume that the centers are uniformly dis-
tributed in the unit cell, in the sense that for any continuous function f : �L → R

one has

lim
N→∞

1

N

∑
i

f (Xi ) =
∫

�L

f (x) dx, (2.6)

and that they are not too close, in the sense that

|Xi − X j | ≥ c0

N 1/3
(2.7)
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for some c0 which does not depend on N. The condition (2.6) implies convergence
for two point functions, i.e.

lim
N→∞

1

N 2

∑
i, j

f (Xi , X j ) =
∫

�L×�L

f (x, y) dxdy (2.8)

for all continuous f : �L × �L → R, and analogously for three-point ones. Fur-
ther, (2.7) will permit us to apply those convergence results also to the Green’s
function G and to its square, provided the diagonal terms are truncated.

Distribution of radii. We assume that the (rescaled) radii {Ri } are inde-
pendently and identically distributed (i.i.d.) according to a bounded probability
density ν with compact support contained in [0, R0] for some R0 > 0.

Notation. With 〈·〉 we denote the expected value with respect to the joint
probability measure P of the random variables {Ri }. We also use the abbrevia-
tion 〈R〉 := 〈Ri 〉, 〈R2

i 〉 := 〈R2
i 〉 etc. We denote by C a generic constant, which is

independent of N and φ, but may change from line to line.

2.3. Main Results

Theorem 2.1. Assume that the radii Ri are i.i.d. with max Ri ≤ R0, the Xi are
uniformly distributed in the unit cell of L in the sense of (2.6-2.7), and (2.2) is
valid. Then

N−1/3〈R〉2

φ1/3

[
Ė − Ė L SW

] N
1≈ σ 2
R

⎡
⎣∑

k∈L∗
0

4π

|k|2
((

y(k)
)2 − 1

)+ G0

⎤
⎦ in law

where (y(k))k∈L∗ are Gaussian random variables with〈
y(k)
〉 = 0 and

〈
y(k) y(l)

〉 = δkl,

and σ 2
R = 〈R2〉 − 〈R〉2 is the variance of the distribution of radii.

By YN
N
1≈ Z N in law we mean that for any bounded continuous function f

one has

lim
N→∞

〈 f (YN )〉 − 〈(Z N )〉 = 0. (2.9)

This is sometimes also called convergence in distribution as e.g. in Ref. 7.
We remark that YN and Z N need not be defined on the same probability space,
they only need to take values in the same space (the domain of f, in our case R).

We also need to extend the convergence expressed in (2.9) to continuous
functions f with quadratic growth at infinity. It is well-known that to establish
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(2.9) for those functions it is sufficient to show that 〈eikYN 〉 − 〈eik Z N 〉 → 0 as
N → ∞ for any k ∈ R and that 〈|YN |p〉, 〈|Z N |p〉 are uniformly bounded for some
p > 2. In the following it will usually be convenient to show a corresponding
estimate for p = 4.

We draw from this theorem two main consequences, concerning the influence
of the geometry (of the lattice L) and the presence of large fluctuations.

Corollary 2.2. The average value of the leading-order correction

lim
N→∞

N 1/3〈R〉2

φ1/3
〈Ė − Ė L SW 〉 = G0σ

2
R

depends on the geometry of the chosen lattice L. In particular, the sign of G0 can
be both positive and negative, depending on L.

Corollary 2.3. For any M > 0 there is a finite probability ρM > 0 that the scaled
deviation is larger than M, in the sense that

lim
N→∞

P

(
N 1/3(R)2

φ1/3
|Ė − Ė L SW | ≥ M

)
≥ ρM > 0.

The next three sections are devoted to the proof of these results: Theorem 2.1
will be proved in Sec. 3, Corollary 2.3 in Sec. 4, and Corollary 2.2 in Sec. 5.

3. THE REPRESENTATION THEOREM

3.1. Identification of the Leading Order Term

In Chapter 2 of Ref. 6 it was shown that the energy decay rate can be given a
variational formulation, which in the present notation reads

Ė − Ė L SW = min
{B̃i :

∑
B̃i =0}

⎧⎨
⎩

1

N

∑
i

(
B̃i − BL SW

i

)2
Ri

+ φ1/3

N 4/3

∑
i, j

gi j B̃i B̃ j

⎫⎬
⎭ .

Taking B̃i = BL SW
i one immediately sees that

Ė − Ė L SW ≤ φ1/3

N 4/3

∑
i, j

gi j BL SW
i BL SW

j .

We now show that in the subcritical case, that is if (2.2) is satisfied, this bound is ac-
tually an equality to leading order (this can be heuristically understood considering
the one-dimensional trivial case minx∈R(x − a)2 − εx2 = −εa2 + O(ε2)).
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Lemma 3.1. Assume that the radii Ri are i.i.d. with max Ri ≤ R0, the centers
Xi satisfy (2.7), and (2.2) holds. Then, for any δ > 0 there is M > 0 such that

lim
N→∞

P

⎛
⎝∣∣∣N 1/3

φ1/3
[Ė − Ė L SW ] − 1

N

∑
i, j

gi j BL SW
i BL SW

j

∣∣∣ ≥ Mφ1/3 N 2/3

⎞
⎠ ≤ δ.

Proof: We view B and R as vectors in R
N , equipped with the canonical scalar

product v · w =∑ viwi , and rewrite the linear system (2.5) as

B + εAB = 1 − λR, (3.1)

where 1 is the vector with components (1)i = 1,

ε = φ1/3 N 2/3, and (Av)i = 1

N

∑
j

Ri gi jv j .

We further define the vector R−1 by (R−1)i = R−1
i and the operator g by

(gv)i = 1

N

∑
j

gi jv j .

The system (3.1) has the solution

B = (Id + εA)−1(1 − λR) = (Id + εA)−1(BL SW − µR), (3.2)

provided that ε|A| < 1, where BL SW = 1 − R/R̄ is the LSW solution. Here µ =
λ − 1/R̄, and both, µ and λ, are determined by requiring that 1 · B =∑ Bi = 0.

We observe that |A| ≤ R0|g|, and evaluate the latter. For any v ∈ R
N ,

|gv|2 =
∑

i

(gv)2
i = 1

N 2

∑
i, j,k

gi j gikv jvk

≤
(

1

N
max
j ′,k ′

∑
i

|gi j ′ ||gik ′ |
)⎛
⎝ 1

N

∑
j,k

|v j ||vk |
⎞
⎠ .

≤
(

1

N
max

j

∑
i

g2
i j

)
|v|2. (3.3)

To bound the sum over g2
i j , we observe that the periodic Green’s function G differs

from the Coulomb interaction with the closest particle only by a term of order one,
i.e., ∣∣∣G(Xi − X j ) − 1

min{|Xi − X j − l| : l ∈ L}
∣∣∣ ≤ C.
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(The constant C depends on the geometry of the lattice, but not on N). Due to
(2.7) the effect of the Coulomb interaction can be estimated by the corresponding
integral expression, as explained in the Appendix of Ref. 6 We conclude that
|gv|2 ≤ C |v|2 and hence |g| ≤ C and |A| ≤ C R0, and for small ε the operator
inverse in (3.2) is well defined.

The energy decay rate takes the form

Ė − Ė L SW = − 1

N

1

R
· (B − BL SW ) = − 1

N

(
1

R
− 1

R̄
1

)
· (B − BL SW )

where we used that 1 · B = 1 · BL SW = 0. Now we insert (3.2), multiply by N and
separate the term linear in µ from the rest. We obtain

N (Ė − Ė L SW ) = T1 + T2,

where

T1 = µ

(
1

R
− 1

R̄
1

)
· ((Id + εA)−1 R)

T2 = −
(

1

R
− 1

R̄
1

)
· ((Id + εA)−1 BL SW − BL SW ).

In T1 expand (Id + εA)−1 = Id − εA(Id + εA)−1. This amounts to rendering ex-
plicitly the leading-oder term of the Taylor expansion in powers of ε. Since
R−1 · R = 1 · R/R̄ = N , the leading-order term cancels and

T1 = −µ

(
1

R
− 1

R̄
1

)
· εA(Id + εA)−1 R.

In T2 we expand to second order (Id + εA)−1 = Id − εA + εA(Id + εA)−1εA.
Again, the first term cancels, and we obtain

T2 = �E1 + T3.

Here the first term is linear in ε and takes the form

�E1

(
1

R
− 1

R̄
1

)
· εABL SW = εBL SW · gBL SW .

i.e. it is the desired leading-order effect. The remainder is

T3 = −
(

1

R
− 1

R̄
1

)
· εA(Id + εA)−1εABL SW .

We shall now show that the error terms T1 and T3 are, with a high probability,
negligible. It is convenient to consider the vector

V = R̄g BL SW = R̄ AT

(
1

R
− 1

R̄
1

)
,
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and to observe that

|R̄ ABL SW | ≤ R0|Ḡg BL SW | = R0|V |. (3.4)

For simplicity we work in the following under the assumption

R̄ ≥ 1

2
(R) and |εA| ≤ 1

3
. (3.5)

The latter implies |(Id + εA)−1| ≤ 3/2. We shall show later that (3.5) holds with
probability close to one if ε is small and N is large.

We start with T3, which can be written as

T3 = − 1

R̄
ε2V · (Id + εA)−1 ABL SW .

Therefore (3.5) implies |T3| ≤ Cε2|V |2 (here C can depend on 〈R〉 and R0).
In order to estimate T1 we need to determine the correction to the chemical

potential µ. We start from (3.2), which gives

0 = 1 · B = 1 · (Id + εA)−1(BL SW − µR).

We expand again to leading order (Id + εA)−1 = Id − (Id + εA)−1εA. The term
1 · BL SW = 0 cancels. Solving for µ we obtain

µ = 1 · (Id + εA)−1εABL SW

1 · R − 1 · (Id + εA)−1εAR
.

Since |1| = N 1/2 and 1 · R = N R̄, using (3.5) we can estimate the denominator
by

|1 · R − 1 · (Id + εA)−1εAR| ≥ N R̄ −
∣∣∣∣1
∣∣∣∣32
∣∣∣∣ εAR

∣∣∣∣
≥ 1

2
N 〈R〉 − 3

2
N |εA|R0.

Hence if we add to (3.5) the condition

|εA| ≤ 〈R〉
6R0

(3.6)

then the denominator in the expression for µ is larger than 1/4N 〈R〉, and we can
conclude

|µ| ≤ Cε
|ABL SW |
N 1/2〈R〉 . (3.7)

We finally write T1 as

T1 = − 1

R
εµV · ((Id + εA)−1 R).



Nonuniversality in Low-Volume-Fraction Ostwald Ripening 241

Since |R| ≤ N 1/2 R0, using (3.5), (3.7) and (3.4) we obtain

|T1| ≤ Cε|µ||V |R0 N 1/2 ≤ Cε2|V |2 R2
0

〈R〉2
.

It remains to estimate the norm of V, which in components reads

Vi = 1

N

∑
j

gi j R̄BL SW
j = 1

N

∑
j

gi j (R̄ − R j ).

Since the Ri are i.i.d., 〈R j Rk〉 = 〈R〉2 + (〈R2〉 − 〈R〉2)δ jk . An explicit computa-
tion shows that

〈(R j − R̄)(Rk − R̄)〉 = (〈R2〉 − 〈R2〉)
(

δ jk − 1

N

)
.

To see this it suffices to expand the square, and evaluate

〈R̄2〉 = 1

N

∑
h

〈Rh R̄〉 = 〈R j R̄〉 = 1

N

∑
h

〈〈R j Rh〉

= 〈R2〉 + 1

N
(〈R2〉 − 〈R2〉).

We obtain

〈V 2〉 = 1

N 2

∑
i jk

gi j gik〈(R j − R̄)(Rk − R̄)〉

= (〈R2〉 − 〈R2〉)
⎡
⎣ 1

N 2

∑
i j

g2
i j − 1

N 3

∑
i jk

gi j gik

⎤
⎦ ≤ C.

The uniform bound on the square bracket follows from the same argument as in
(3.3). We remark that the key ingredients in the estimate for |V | are (i) that the
vector Ri − R̄ is well approximated for large N by Ri − 〈R〉, whose entries have
average zero, and (ii) that the operator g averages over many points.

The norm |V | is nonnegative, therefore for any N

P(|V | ≥ M) ≤ C

M
.

Consider finally (3.5) and (3.6). Recalling that |A| ≤ C R0, that ε → 0 as N →
∞, and observing that R̄ is approximately normally distributed with variance
proportional to 1/N since the Ri are i.i.d., we have

lim
N→∞

P (All conditions in (3.5) and (3.6) hold) = 1.
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We conclude

lim
N→∞

P(|T1| + |T3| ≥ ε2 M2) ≤ C

M
,

hence the thesis. �

In the following we derive a simpler expression for the leading correction
term to Ė − Ė L SW . We define

S = 1

N

∑
i, j

gi j (Ri − R̄)(R j − R̄).

so that Lemma 3.1 gives that with large probability

Ė − Ė L SW = φ1/3

N 1/3 R̄2
S + O

(
φ2/3 N 1/3

R̄2

)

(recall that BL SW
i = 1 − Ri/R). Now we replace the variables Ri by

Yi := Ri − 〈R〉,
which have zero expectation value. Since the Yi are identically distributed with
mean zero, their average (over i) will behave as N−1/2 for large N. It is therefore
natural to write

Ri − R̄ = Yi − 1

N 1/2
Ỹ , where Ỹ = N 1/2(R̄ − 〈R〉) = 1

N 1/2

∑
i

Yi .

We use this notation in the definition of S and write S = S1 + S2 + S3, where

S1 := 1

N

∑
i, j

gi j Yi Y j ,

S2 :=
(

1

N 2

∑
l,k

gkl

)(
1

N 1/2

∑
i

Yi

)2

,

S3 := −2

(
1

N 3/2

∑
i

Yi

∑
k

gik

)(
1

N 1/2

∑
i

Y j

)
.

We now show that for large N, and with high probability, only the first term is
relevant. This is based on the fact that sums over the discrete Green’s function gi j

converge to the corresponding integral expression, which by our normalization
vanishes.
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Lemma 3.2. Under the same assumptions as in Theorem 2.1 we have for any
M > 0 that

lim
N→∞

P(|S2| + |S3| ≥ M) = 0

and

lim
N→∞

P

(∣∣∣∣N
1/3〈R〉2

φ1/3
[Ė − Ė L SW ] − S1

∣∣∣∣ ≥ M

)
= 0.

Proof: Consider first S2. The second term is the square of Ỹ , which is approxi-
mately normally distributed for large N. Therefore for any ε > 0 there is Kε > 0
such that

lim
N→∞

P(Ỹ 2 ≥ Kε) ≥ ε.

The first term instead converges to zero as N → ∞, by (2.6). Hence for sufficiently
large N it is controlled by M/Kε. This implies that

lim
N→∞

P(|S2| ≥ M) ≤ ε.

for any ε > 0, hence the result for S2.
Now consider S3. It suffices to show that 〈S2

3 〉 → 0. Expanding the product
we get

〈
S2

3

〉 = 4

N 2

⎧⎨
⎩2
∑
i, j

(
1

N

∑
k

gik

)(
1

N

∑
l

gik

)
〈Y 2〉2

+
∑

i

(
1

N

∑
k

gik

)2

〈Y 4〉 + N
∑

i

(
1

N

∑
k

gik

)2

〈Y 2〉2

⎫⎬
⎭ .

Since by (2.6-2.8) all sums over the Green’s function g converge to zero, and all
expectation values of Y 2 are bounded, the right hand side of the previous equation
converges to zero. This concludes the proof of the first claim.

To prove the second claim we start from Lemma 3.1, which after scaling and
using (2.2) gives for any M > 0

lim
N→∞

P

(∣∣∣∣α − 1

R̄2
S

∣∣∣∣ ≥ M

)
= 0, where α = N 1/3

φ1/3
[Ė − Ė L SW ] .

At the same time, since the {Ri } are i.i.d., the central limit theorem gives

lim
N→∞

P(|R̄ − 〈R〉| ≥ M) = 0
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for any M > 0. We now write

〈R〉2α − S1 = 〈R〉2

(
α − S

R̄2

)
+ S2 + S3 + 〈R〉2 − R̄2

R̄2
S.

Each of the first three terms is almost surely bounded by M/4 in the limit, for any
M. Consider now the last one. Fix a large K > 0. Then

P

(∣∣∣∣ 〈R〉2 − R̄2

R̄2
S

∣∣∣∣ ≥ M

4

)

≤ P

(
|〈R〉2 − R̄2| ≥ M

4K

)
+ P

(
|R̄| <

1

2
〈R〉
)

+
(

|S| ≥ K
〈R〉2

4

)
.

Taking the limit N → ∞ the first two terms vanish. It remains to show that the
last one can be made arbitrarily small by choosing K sufficiently large. To do so,
we first show that

〈
S2

1

〉 = 1

N 2

∑
i, j,k,l

gi j gkl〈Yi Y j YkYl〉

=
(

〈Y 2〉2 + 1

N
〈Y 4〉

)
G2

0 + 2〈Y 2〉2 1

N 2

∑
i, j

g2
i j ≤ C

which implies

lim
K→∞

lim sup
N→∞

P(|S1| ≥ K ) = 0,

and hence the same for S. This concludes the proof. �

3.2. Representation in Fourier Space

We now show that by Fourier transformation the fluctuations in the error term
are, for large N, characterized by the sum of independent terms.

Lemma 3.3. In the limit N → ∞, and under the same assumptions as in Theo-
rem 2.1,

1

N

∑
i, j

gi j Yi Y j
N
1≈ σ 2

R

⎡
⎣∑

k∈L∗
0

4π

k2

((
y(k)
)2 − 1

)+ G0

⎤
⎦ in law

where (y(k))k∈L∗ are Gaussian random variables with

〈y(k)〉 = 0 and〈y(k) y(l)〉 = δkl,
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and σ 2
R = 〈Y 2〉 = 〈R2〉 − 〈R〉2 is the variance of the distribution of radii.

Proof: By scaling we can assume without loss of generality that 〈Y 2〉 = σ 2
R = 1.

We introduce the new variables y(k)
N , for k in the reciprocal latticeL∗, as the Fourier

coefficients of the distribution

1√
N

∑
n

YnδXn

(in the following proof we shall not use the index i to avoid confusion with the
imaginary unit). In order to keep all quantities real, it is more convenient to adopt
the basis functions

e(k)(x) = cos(x · k) + sin(x · k) = �(1 − i)eik·x ,

which constitute a complete orthonormal system in L2(�). Precisely, we set

y(k)
N = 1√

N

∑
n

Yne(k)(Xn).

We need to show that the y(k)
N can be replaced by the uniformly distributed variables

y(k). We first show, by mimicking the proof of the central limit theorem, that any
bounded subset of the y(k)

N (in particular, those with |k| < M for any M) converge
to normally distributed variables. Then we show that the large wavenumbers give
a negligible contribution, for large M. The k = 0 case needs a separate treatment,
due to the divergence of the Green’s function at small separations.

We start by establishing that the fourth moments of y(k)
N are uniformly bounded

in k and N. Indeed, we have

〈(
y(k)

N

)4〉 = 1

N 2

∑
N

(
e(k)(Xn)

)4 〈Y 〉4

= 3

N 2

∑
n

∑
m �=n

(
e(k)(Xn)

)2 (
e(k)(Xm)

)2 〈y2〉2

≤ 1

N 2

∑
N

N24〈Y 4〉 + 3

N 2
N 224〈Y 2〉2 ≤ C . (3.8)

We now claim that for any number M < ∞

(
y(k)

N

)
k∈L∗
|k|<M

N
1≈ (
y(k)
)

k∈L∗
|k|<M

in law. (3.9)
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Thanks to the bound (3.8), to prove the claim (3.9) it suffices to show that for any
finite dimensional vector (ζ (k)) k∈L∗

|k|<M
with ζ (k) ∈ R one has

lim
N→∞

〈
exp

⎛
⎜⎝−i

∑
k∈L∗
|k|<M

ζ (k) y(k)
N

⎞
⎟⎠
〉

= exp

⎛
⎜⎝−1

2

∑
k∈L∗
|k|<M

(
ζ (k)
)2
⎞
⎟⎠ . (3.10)

Since |Yn| ≤ R0, 〈Yn〉 = 0, and 〈Y 2
n 〉 = 1, for any ξ ∈ R we have∣∣∣∣〈exp(−iξYn)〉 −

(
1 − 1

2
ξ 2

)∣∣∣∣ ≤ C |ξ |3

which we use in the form∣∣∣∣ln 〈exp(−iξYn)〉 + 1

2
ξ 2

∣∣∣∣ ≤ C |ξ |3. (3.11)

We set ζ (k) := 0 for |k| ≥ M , and define the smooth function

ζ (x) :=
∑
k∈L∗

ζ (k)e(k)(x).

A straightforward computation shows that

1√
N

∑
n

ζ (Xn)Yn
1√
N

∑
n

∑
k∈L∗

ζ (k)e(k)(Xn)Yn =
∑
k∈L∗

ζ (k) y(k)
N .

From the independence of the Yn’s we obtain〈
exp

(
−i
∑
k∈L∗

ζ (k) y(k)
N

)〉
=
∏

n

〈
exp

(
−i

1√
N

ζ (Xn)Yn

)〉

which we write as

ln

〈
exp

(
−i
∑
k∈L∗

ζ (k) y(k)
N

)〉
=
∑

n

ln

〈
exp

(
−i

1√
N

ζ (Xn)Yn

)〉
. (3.12)

On the other hand, we have for the right-hand side of (3.10)

ln exp

(
−1

2

∑
k

(
ζ (k)
)2) = −1

2

∑
k

(
ζ (k)
)2 = −1

2

∫
�L

ζ (x)2dx . (3.13)

Hence, it follows from (3.11), (3.12), and (3.13):∣∣∣∣∣ln
〈

exp

(
−i
∑

k

ζ (k) y(k)
N

)〉
− ln exp

(
−1

2

∑
k

(
ζ (k)
)2)∣∣∣∣∣
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=
∣∣∣∣∣
∑

n

ln

〈
exp

(
−i

1√
N

ζ (Xn)Yn

)〉
+ 1

2

∫
�L

ζ (x)2dx

∣∣∣∣∣

≤
∑

n

∣∣∣∣ln
〈
exp

(
−i

1√
N

ζ (Xn)Yn

)〉
+ 1

2

1

N
ζ (xn)2

∣∣∣∣

+1

2

∣∣∣∣∣
1

N

∑
n

ζ (Xn)2 −
∫

�L

ζ (x)2dx

∣∣∣∣∣

≤ C
1

N 3/2

∑
n

ζ (Xn)3 +
∣∣∣∣∣

1

N

∑
n

ζ (Xn)2 −
∫

�L

ζ (x)2dx

∣∣∣∣∣ .
The first term converges to zero as N → ∞ since it is bounded by C N−1/2 max |ζ |,
the second one by the uniform distribution of the centers (see (2.6)). This concludes
the proof of (3.10), and hence of (3.12). In turn, (3.12) implies in particular
that

∑
k∈L∗

0
|k|<M

Ĝ(k)
(

y(k)
N

)2 N
1≈
∑
k∈L∗

0
|k|<M

Ĝ(k)
(
y(k)
)2

in law,

where Ĝ(k) = 4π/|k|2 represent the Fourier coefficients of G.
To conclude the proof we consider for any M < ∞ the term

T := 1

N

∑
n,m

gnmYnYm −

⎧⎪⎨
⎪⎩
∑
k∈L∗

k �=0,|k|<M

Ĝ(k)
(

(y(k)
N )2 − 1

)
+ G0

⎫⎪⎬
⎪⎭ . (3.14)

We claim

lim
M→∞

lim
M→∞

〈T 2〉 = 0. (3.15)

Fix a large number ξ 
 1, and consider the screened potential defined, in
reciprocal space, by

Ĥ (k)
ξ := 4π

|k|2 + ξ 2

and the corresponding real-space version, defined in analogy to (2.3) by

Hξ (x) :
∑
k∈L∗

0

Ĥ (k)
ξ eik·x .
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The potential Hξ is constructed in order to remove the divergence of G in the
origin. Precisely, since

(Ĝ − Ĥξ )(k) = 4πξ 2

|k|2(|k|2 + ξ 2)
(3.16)

decays as |k|−4 for large |k|, in real space the difference G − Hξ is continuous.
We split the first term in (3.14) as follows

1

N

∑
n,m

gnmYnYm = 1

N

∑
n,m

(G − Hξ )(Xn − Xm)YnYm

+ 1

N

∑
n

∑
m �=n

Hξ (Xn − Xm)YnYm

+(G0 − (G − Hξ )(0))
1

N

∑
n

Y 2
n . (3.17)

(recall that gnn = G0, and gnm = G(Xn − Xm) for n �= m). Since the first term in
(3.17) is continuous we use its Fourier series representation,

1

N

∑
n,m

(G − Hξ )(Xn − Xm)YnY m =
∑
k∈L∗

0

(Ĝ − Ĥξ )(k)
(

y(k)
N

)2

(to prove this it is sufficient to insert in the right-hand side the definition of the
y(k)

N , and to use that Ĝ and Ĥξ are even in k). By setting x = 0 in the definition of
G and Hξ we immediately get

∑
k∈L∗

0

(Ĝ − Ĥξ )(k) = (G − Hξ )(0).

These relations permit to rewrite (3.17) in the form

1

N

∑
n,m

gnmYnYm =
∑
k∈L∗

0

(Ĝ − Ĥξ )(k)
((

y(k)
N

)2 − 1
)

+ 1

N

∑
n

∑
m �=n

Hξ (Xn − Xm)YnYm

+ (G − Hξ )(0)

(
1 − 1

N

∑
n

Y 2
n

)
+ G0

1

N

∑
n

Y 2
n .
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Thus we obtain the following representation for T :

T =
∑
k∈L∗
|k|≥M

(
Ĝ − Ĥξ

)(k)
(

(y(k)
N )2 − 1

)

−
∑
k∈L∗

0
|k|<M

Ĥ (k)
ξ

((
y(k)

N

)2 − 1
)

+[(G − Hξ )(0) − G0]

(
1 − 1

N

∑
n

Y 2
n

)

+ 1

N

∑
n

∑
m �=n

Hξ (Xn − Xm)YnYm

= T1 + T2 + T3 + T4.

We will establish (3.15) by showing

lim
M→∞

lim sup
ξ→∞

lim sup
N→∞

〈T 2
i 〉 = 0 for i = 1, 2, 3, 4. (3.18)

We start with T1 and calculate:

〈
T 2

1

〉 = ∑
k∈L∗
|k|≥M

∑
l∈L∗
|l|≥M

(Ĝ − Ĥξ )(k)(Ĝ − Ĥξ )(l)
〈((

y(k)
N

)2 − 1
) ((

y(l)
N

)2 − 1
)〉

.

We now apply the dominated convergence theorem to this sum. First, according
to (3.8) we have 〈((

y(k)
N

)2 − 1
) ((

y(l)
N

)2 − 1
)〉

≤ C.

Hence the integrand is controlled by (Ĝ − Ĥξ )(k)(Ĝ − Ĥξ )(l), which has a finite
sum (see (3.16)). Therefore we can take the pointwise limit. By (3.9)
we have for any k, l ∈ L∗,

lim
N→∞

〈((
y(k)

N

)2 − 1
) ((

y(l)
N

)2 − 1
)〉

=
{ 〈(y2 − 1)2〉 if k = l

0 if k �= l.

We conclude that

lim
N→∞

〈
T 2

1

〉 ≤ C
∑
k∈L∗
|k|≥M

(
(Ĝ − Ĥξ )(k)

)2
≤ C

∑
k∈L∗
|k|≥M

1

|k|4 ≤ C

M
,

which implies (3.18) for i = 1.
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The term T2 is treated analogously. In this case summability follows from the
fact that the sum is over |k| ≤ M and |Ĥξ | ≤ C/ξ 2. We obtain

lim
N→∞

〈
T 2

2

〉 ≤ C
∑
k∈L∗

0
|k|<M

(
Ĥ (k)

ξ

)2
≤ C

M3

ξ 4
,

which implies that, for any M,

lim
ξ→∞

lim
N→∞

〈
T 2

2

〉 = 0.

We now address T3. A straightforward expansion gives

〈(
1 − 1

N

∑
n

Y 2
n

)2〉
= 1 − 2

N

∑
n

〈
Y 2

n

〉+ 1

N 2

∑
n

∑
m �=n

〈
Y 2

m

〉+ 1

N 2

∑〈
Y 4

n

〉

= 1

N
(〈Y 4〉 − 1)

≤ C

N
.

Therefore

〈
T 2

3

〉 = [(G − Hξ )(0) − G0]2

〈(
1 − 1

N

∑
n

Y 2
n

)2〉
≤ C

N

and thus

lim
N→∞

〈
T 2

3

〉 = 0.

We finally treat T4. Since the Yn are independent, and Hξ is even,

〈
T 2

4

〉 = 1

N 2

∑
n

∑
m �=n

Hξ (Xn − Xm)
∑

p

∑
q �=p

Hξ (X p − Xq )〈YnYmYpYq〉

= 1

N 2

∑
n

∑
m �=n

Hξ (Xn − Xm)Hξ (Xn − Xm)〈Y 2〉2

+ 1

N 2

∑
n

∑
m �=n

Hξ (Xn − Xm)Hξ (−(Xn − Xm))〈Y 2〉2

= 2

N 2

∑
n

∑
m �=n

H 2
ξ (Xn − Xm).
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We thus obtain from (2.8), and using periodicity of Hξ ,

lim
N→∞

〈
T 2

4

〉 = 2
∫

�L×�L

H 2
ξ (x − y)dx dy = 2

∫
�L

H 2
ξ (x)dx = 2

∑
k∈L∗

0

(
Ĥ (k)

ξ

)2
.

The last sum is again estimated by the corresponding integral expression,
∑
k∈L∗

0

(
Ĥ (k)

ξ

)2 ≤ C

∫
R3

1

(k2 + ξ 2)2
dx ≤ C

ξ
.

This implies limξ→∞ limN→∞〈T 2
4 〉 = 0, and concludes the proof of (3.18).

To conclude the proof of the lemma it remains to show that

F =
∑
k∈L∗
|k|≥M

G(k)
((

y(k)
)2 − 1

)

satisfies

lim
M→∞

〈F2〉 = 0,

which is argued similarly to the case of T1. �

Proof of Theorem 2.1. Theorem 2.1 follows from the combination of Lemma
3.2 and Lemma 3.3. �

4. IMPLICATIONS: POSITIVE LONG TAIL

Theorem 2.1 allows a simple analysis of the fluctuation properties of the
energy decay rate. We now show that in the limit N → ∞ large fluctuations have
a nonvanishing probability.

First we prove the following lemma.

Lemma 4.1. Consider the random variable

ZK = π K 1/2
∑
k∈L∗
|k|>K

1

|k|2
((

y(k)
)2 − 1

)
,

with {yk}k∈L∗ independent and normally distributed. Then we have

ZK
K→∞−→ normali zed Gaussian in law.

Proof: It is sufficient to show that for any ξ ∈ R

lim
K→∞

ln〈eiξ Zk 〉 = −1

2
ξ 2, (4.1)
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and that the fourth moment of ZK is uniformly bounded.
We start by proving (4.1). By the independence of the y(k) we get

ln
〈
eiξ Z K

〉 = ∑
|k|>K

ln〈eiξk ((y(k))2−1)〉, where ξk = π K 1/2

|k|2 ξ.

The expectation value can be determined explicitly according to

〈
eiξ (y(k))2 〉 = 1

(2π )1/2

∫
R

e− 1
2 (1−2iξ )y2

dy = 1

(1 − 2iξ )1/2

(to see this, it is sufficient to integrate along the line y′ = (1 − 2iξ )1/2 y in the
complex plane). Inserting this expression, and expanding the result for small ξk ,
we obtain

ln〈eiξ Zk 〉 =
∑

|k|>K

ln
e−iξk

(1 − 2iξk)1/2

=
∑

|k|>K

−ξ 2
k + Rk

= −ξ 2
∑

|k|>K

π2 K

|k|4 +
∑

|k|>K

Rk

where the remainder Rk satisfies |Rk | ≤ 2|ξk |3, and therefore∣∣∣∣∣∣
∑

|k|>K

Rk

∣∣∣∣∣∣ ≤ Cξ 3
∫ ∞

K

K 3/2

r6
r2dr ≤ C

ξ 3

K 3/2
.

To estimate the first term, we observe that

lim
K→∞

∑
k∈L∗
|k|>K

π2 K

|k|4 = 1

2
.

(the unit cell of L∗ has volume (2π )3, hence the sum is (2π )−3 times a Riemann
sum for the corresponding integral). The limit (4.1) follows.

To conclude the proof of the lemma we only need to show that the fourth
moment of ZK is uniformly bounded. To see this, we evaluate

〈
Z4

K

〉 ≤ C K 2

⎛
⎝∑

|k|≥K

〈((y(k))2 − 1)2〉
|k4|

⎞
⎠

2

+ K 2
∑

|k|≥K

〈((
y(k)
)2 − 1

)4〉
|k|8 ≤ C.

This concludes the proof. �
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Proof of Corollary 2.3. Consider the term

Z :=
∑
k∈L∗

0

1

|k|2 zk

where

zk := 1√
2

((
y(k)
)2 − 1

)
for k ∈ L∗.

The following proof of the large-deviation result of Corollary 2.3 is based on the
fact that the contributions at small k to sum forming Z have large deviations (much
as each single normally-distributed random variable has), and the fact that, being
independent, the contributions at large k do not average this out. More precisely,
by Lemma 4.1 the large-k contributions to the sum is approximately normately
distributed, hence it is nonnegative with probability approximately 1/2.

To make this argument precise, we separate the two contributions

Z :=
∑
k∈L∗

0
|k|≤K

1

|k|2 zk +
∑
k∈L∗
|k|>K

1

|k2| zk .

(here K is a fixed number to be chosen below). According to Lemma 4.1 the
second term converges, as K → ∞, to a scaled Gaussian with zero average.
Hence for sufficient large K it is nonnegative with probability at least 1/4. Further,
for sufficiently large K one has

(2π )3

4π K

∑
k∈L∗

0|k|≤K

1

|k|2 ≥ 1

2

(the choice of K does not depend on M). We compute

P

⎛
⎜⎝∑

k∈L∗
0|k|≤K

1

|k|2 zk ≥ M

⎞
⎟⎠ ≥ P

⎛
⎜⎝∑

k∈L∗
0|k|≤K

1

|k|2 zk ≥ 2(2π )3

4π K
M

∑
k∈L∗

|k|≤K ,k �=0

1

|k|2

⎞
⎟⎠

≥
∏
k∈L∗

0
|k|≤K

P

(
zk ≥ 4π2 M

K

)
.

This is the product of a fixed number of terms, which are all identical and nonneg-
ative. Therefore the latter expression is positive for any M. Combining with the
previous estimate, we conclude that for every M there is a number ρM such that

P(Z ≥ M) ≥ ρM .

which is the thesis. �



254 Conti, Hönig, Niethammer and Otto

5. IMPLICATIONS: DEPENDENCE ON GEOMETRY

We focus here on some properties of the constant G0 defined in (2.4), which
characterizes the average value of the fluctuation. The sum (2.3) defining G does
not converge absolutely for ε = 0. In order to evaluate it it is convenient to
separate the long-range and the short-range parts, a method usually called Ewald
decomposition. There are many ways to do that, the simplest being to use a
Gaussian weight function. More precisely, we fix some α > 0 and write G =
GSR + GLR, where

GLR(x) =
∑
k∈L∗

0

4πe−α|k|2

|k|2 eik·x

and

GSR(x) = lim
ε→0

∑
k∈L∗

0

φ̂ε(k)eik·x , φ̂ε(k) = 4π
1 − e−α|k|2

|k|2 e−ε|k|2 (5.1)

(we denote by “long range” the contributions which are long range in real space,
hence short range in reciprocal space). The sum defining GLR converges fast. The
sum defining GSR does not converge absolutely for ε = 0, but the kernel φ̂ε, seen
as a function defined on R

3, is smooth around the origin and indeed its Fourier
transform decays rapidly.

Lemma 5.1. The definition (5.1) is equivalent to

GSR(x) =
∑
y∈L

1

|x + y|erfc

( |x + y|
2α1/2

)
− 4πα.

Here erfc(x) = 1 − erf(x), where erf : R → R is the error function

erf(x) = 2

π1/2

∫ x

0
e−t2

dt.

Remark 5.2. Taking the limit |x | → 0 of the previous expression gives

lim
x→0

GSR(x) − 1

|x | =
∑

y∈L\{0}

1

|y|erfc

( |y|
2α1/2

)
− 4πα − 1

(απ )1/2
. (5.2)

Proof: We start from the Fourier transform

φε = 1

(2π )3

∫
R3

eik·x φ̂ε(k) dk
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of φ̂ε (for an analytic expression, see below) and its lattice sum,

�ε(x) =
∑
y∈L

φε(x + y).

Convergence of the series will follow from the explicit computations below. The
function �ε is L-periodic, and in L2(�L). Its Fourier series is given by φ̂ε(k):
indeed, for k ∈ L∗ we get∫

�L
�ε(x)e−ik·x dx =

∫
R3

φε(x)e−ik·x dx = φ̂ε(k).

By the inversion theorem for Fourier series we get∑
k∈L∗

φ̂ε(k)eik·x = �ε(x)

where the sum also includes the k = 0 point, where φ̂ε(0) = 4πα. Comparing with
the definition (5.1) we get

GSR(x) = lim
ε→0

�ε(x) − φ̂ε(0) = lim
ε→0

∑
y∈L

φε(x + y) − 4πα.

We now have

φε(x) = 4π

(2π )3

∫
R3

eik·x e−ε|k|2 1 − e−α|k|2

|k|2 dk

= 2

π

∫ ∞

0

sin(r |x |)
r |x | (1 − e−αr2

)e−εr2
dr,

which can be computed explicitly, e.g. by using Fourier transform and the integra-
tion rule:

φε(x) = 1

|x |
(

erf
|x |

2ε1/2
− erf

|x |
2(α + ε)1/2

)

= 1

|x |
2√
x

∫ |x |
2ε1/2

|x |
2(α+ε)1/2

e−t2
dt

= 1

|x |
(

1 − erf
|x |

2α1/2

)
+ O(ε).

The resulting function converges exponentially to zero for large x. In the |x | → 0
limit we instead get φ0(x) � |x |−1 − (απ )1/2. �

We have written the Green’s function entirely in terms of fast-converging
lattice sums. Before computing the first few terms explicitly, we show how the
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remainder can be estimated quantitatively. Since we shall need to apply the fol-
lowing estimate to both L and L∗, whose unit cell does not have unit volume, we
formulate it for a general lattice, without normalization.

Lemma 5.3. Let g : (0,∞) → (0,∞) be a nonincreasing function, a ∈ R
3, and

L a lattice on R
3 with unit cell �. Then,

∑
x∈L+a,|x |≥s

g(|x |) ≤ 4π

|�|
∫ ∞

s−diam �

(
t + 1

2
diam �

)2

g(t) dt.

Remark 5.4. As a special case, if L = lZ3 is a cubic lattice and s = 3l,

∑
x∈L+a,|x |≥3l

g(|x |) ≤ 4π

l3

∫ ∞

(3−√
3)l

(
t +

√
3

2
l

)2

g(t) dt

≤ 12π

l3

∫ ∞

(3−√
3)l

t2g(t) dt. (5.3)

Proof: Let �(x) be the translation of the unit cell � which is centered in x, and
extend g to negative arguments so that it remains monotone, e.g. by setting it equal
to g(0). By monotonicity for any x

g(|x |) ≤ 1

|�|
∫

�(x)
g

(
|y| − 1

2
diam �

)
dy.

Summing over the lattice we get

∑
x∈L+a, |x |≥s

g(|x |) ≤ 1

|�|
∫

|y|≥s− 1
2 diam �

g

(
|y| − 1

2
diam �

)
dy.

Going to spherical coordinates, and changing variables in the radial direction from
|y| to t = |y| − diam �/2, this becomes the thesis. �

Lemma 5.5. For a cubic lattice G(x) ≥ G0 everywhere, hence G0 < 0.

Proof: We first compute a bound on GLR, using that L = Z
3 and L∗ = 2πZ

3.
The part of the sum with |k| ≥ 3 · 2π is controlled using (5.3). The 6 terms with
|k| = 2π are computed explicitly. The terms with 2π < |k| < 3 · 2π are estimated
by their number (which is 86) times the largest one (which is g(2π

√
(2)). We
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get

|GLR(x)| ≤ 6
4πe−4π2α

4π2
+ 86

4πe−08π2α

8π2
+ 12π

(2π )3

∫ ∞

(3−√
3)2π

4πe−αt2
dt

≤ 6

π
e−4π2α + 43

π
e−8π2α + 3

(απ )1/2
erfc

(
2πα1/2(3 −

√
3)
)

=: Xα

We now estimate the sum entering GSR for small |x |. This is done with the
same method, but without separating the first 6 terms. We start from the expression
given in (5.2), and get

∑
x∈L\{0}

erfc (|x |/2α1/2)

|x | ≤ 92 erfc

(
1

2α1/2

)
+ 12π

∫ ∞

3−√
3

t erfc

(
t

2α1/2

)
dt

≤ 92 erfc

(
1

2α1/2

)
+ 48παerfc

(
3 − √

3

2α1/2

)

≤ (92 + 48πα) erfc

(
1

2α1/2

)
=: Yα.

In estimating the second term we used the relation

erfc(x) = 2

π1/2

∫ ∞

x
e−t2

dt = 2

π1/2
e−x2

∫ ∞

0
e−2xse−s2

ds ≤ 1

π1/2

e−x2

x

before computing the integral.
Comparing with (2.4) and (5.2) we get

G0 ≤ Xα + Yα − 4πα − 1

(απ )1/2
.

Since GLR(x) ≥ −Xα and GSR(x) ≥ −4πα, the thesis is proven provided that we
can find α such that

2Xα + Yα − 1

(απ )1/2

is negative. By evaluating these terms numerically one can see that for α = 0.05
this expression is approximately −1.13. �

We finally show that there are lattices for which G0 is positive.

Lemma 5.6. If |�L| = 1 and there is a vector k ∈ L∗
0 with |k| ≤ 2, then G0 ≥ 0.
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Proof: It is clear from (5.2) that

G0 ≥ GLR(0) − 4πα − 1

(απ )1/2
.

The sum of the two negative terms is maximal for α = 1/4π , and it equals −3. The
thesis is proven if, for this value of α, we can show that GLR(0) > 3. Indeed, for
x = 0 all terms in the series defining GLR are positive, and it suffices to consider
the two largest ones, which correspond to the vectors ±k. We need

8πe−|k|2/4π

|k|2 > 3.

This is clearly a monotone function, and diverges for |k| → 0, hence there is an
interval (0, k0) of values where the condition is satisfied. One can then check that
k0 > 2 (a more precise estimate gives k0 � 2.33). �

Proof of Corollary 2.2. The equality of the expectation value with G0 follows
from Theorem 2.1. The dependence of G0 on the lattice follows from Lemma 5.5
and Lemma 5.6. �
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